Please check that this question paper contains 09 questions and 02 printed pages within first ten minutes.

MORNING

[Total No. of Questions: 09]

Uni. Roll No. .....

1.4 DEC 2023

[Total No. of Pages: 02]

Program: B.Tech. (Scheme 2018)

Semester: 4th

Name of Subject: Linear Control Systems

Subject Code: PCEC-109

Paper ID: 16225

Scientific calculator is allowed

Time Allowed: 03 Hours

Max. Marks: 60

## NOTE:

1) Parts A and B are compulsory

2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice.

3) Any missing data may be assumed appropriately.

Part - A

[Marks: 02 each]

Q1.

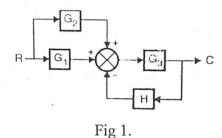
- a) Define Nyquist stability criterion.
- b) Cite any two methods to reduce steady state error.
- c) List any four applications of control system.
- d) Examine the stability of system  $s^3+6s^2+12s+8$ .
- e) Explain why compensation is required in control systems.
- f) Distinguish between feedback and feed forward control system.

Part - B

[Marks: 04 each]

- **Q2.** Explain the Mason's gain formula for the derivation of transfer function with a suitable example.
- Q3. Derive the transfer function of field controlled DC servo motor and hence explain the system characteristics.
- **Q4.** With the aid of diagram, describe the principle of operation of magnetic amplifier. Also, state its advantages.

Q5. Evaluate the restrictions on k so that the system whose transfer function is given below is absolutely stable.


$$G(s) = \frac{K}{S(1+0.5s)(1+0.1s)}$$

$$H(s) = 1$$

MORNING

**Q6.** Obtain  $\frac{c}{R}$  for Fig 1.

1 4 DEL 2023



Q7. Compute the output of first order system when the input applied is unit step. Also, sketch the r(t) and c(t) showing the steady state error.

[Marks: 12 each]

**Q8.** Illustrate the features and control applications of Tachogenerators. Also, differentiate ac and dc Tachogenerators.

OR

Discuss in detail the following:

- 1. Lead compensator
- 2. Lag compensator
- Q9. Compute the undamped natural frequency, damping ratio, damped natural frequency, rise time, peak time, peak overshoot and settling time with 2% criteria for a system having open loop transfer function given by:  $G(s) H(s) = \frac{16}{s(s+6)}$

OR

The loop transfer function of a unity feedback control system is given by:

$$G(s)H(S) = \frac{K}{S(S+2)(s+5)}.$$

Sketch the root locus of the system and determine the value of K, for:

- 1. Critical damping
- 2. Marginal stability from the root locus

\*\*\*\*\*\*