printed pages within first ten questions and 2 Please check that this question paper contains 9

MORNING

[Total No. of Questions: 09]

7 7 MAY 2024

[Total No. of Pages: 02]

Uni. Roll No.

Program: B.Tech. (Batch 2018 onward)

Semester: 4th

Name of Subject: Linear Control Systems

Subject Code: PCEC-109

Paper ID: 16225

Scientific calculator is Allowed

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory

2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice

3) Any missing data may be assumed appropriately

Part - A

[Marks: 02 each]

Q1.

- Define control system. a)
- List down two advantages of Nyquist plots. b)
- Why is compensation required?
- Find the steady state error for unit ramp input for a type-1 system. d)
- Inspect the given transfer function and write it in standard form transfer e) function for Bode plot.

$$G(s)H(s) = \frac{(s+a)(s+b)}{(s+p)(s+q)}$$

Evaluate the transfer function of Low Pass Filter system. f)

Part - B

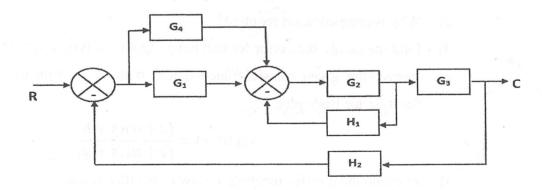
[Marks: 04 each]

- Discuss about open loop and closed loop systems with appropriate examples. **O2**.
- With the help of mechanical translation system diagram explain D'Alembert's Q3. Principle.
- List disadvantages of Hurwitz determinant and explain how is Routh array criterion Q4. helpful to determine the stability of control system.

2.7 MAY 2024

- Q5. When a second order control system is subjected to a unit step input, the values of $\xi = 0.5$, $\omega_n = 6 \ rad/sec$. Determine the rise time, peak time, settling time and peak overshoot.
- **Q6.** Determine phase from the given transfer function and sketch phase bode plot for the given unity feedback system

$$G(s)H(s) = \frac{1000}{s(1+0.1s)(1+0.001s)}$$


Q7. Develop the transfer function of a lag compensator network.

- **Q8.** Explain the following Block Diagram reduction rules
 - a. Feedback loop
 - b. Shifting a summing point before a block
 - c. Shifting a take-off point after a block
 - d. Shifting a take-off point after a summing point

OR

Explain AC and DC Techno Generators in detail.

Q9. Analyze the signal flow graph and find overall gain using Mason's gain formula

OR

The forward path transfer function of a unity feedback system is given by

$$G(s) = \frac{k}{s(s+4)(s+5)}$$

Sketch the root locus as k varies from 0 to ∞ .
